A Non-Euclidean Gradient Descent Framework for Non-Convex Matrix Factorization
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...
We address black-box convex optimization problems, where the objective and constraint functions are not explicitly known but can be sampled within the feasible set. The challenge is thus to generate a sequence of feasible points converging towards an optim ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
We consider the problem of finding a saddle point for the convex-concave objective minxmaxyf(x)+⟨Ax,y⟩−g∗(y), where f is a convex function with locally Lipschitz gradient and g is convex and possibly non-smooth. We propose an ...
We explore consequences of the Averaged Null Energy Condition (ANEC) for scaling dimensions Delta of operators in four-dimensional N = 1 superconformal field theories. We show that in many cases the ANEC bounds are stronger than the corresponding unitarity ...
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the func ...
Stochastic gradient descent (SGD) and randomized coordinate descent (RCD) are two of the workhorses for training modern automated decision systems. Intriguingly, convergence properties of these methods are not well-established as we move away from the spec ...
We propose an adaptive variance-reduction method, called AdaSpider, for minimization of L-smooth, non-convex functions with a finite-sum structure. In essence, AdaSpider combines an AdaGrad-inspired [Duchi et al., 2011, McMahan & Streeter, 2010], but a fai ...
Semidefinite programming (SDP) is a powerful framework from convex optimization that has striking potential for data science applications. This paper develops a provably correct algorithm for solving large SDP problems by economizing on both the storage an ...