A Non-Euclidean Gradient Descent Framework for Non-Convex Matrix Factorization
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Machine learning is most often cast as an optimization problem. Ideally, one expects a convex objective function to rely on efficient convex optimizers with nice guarantees such as no local optima. Yet, non-convexity is very frequent in practice and it may ...
Solving a convex optimization problem within an a priori certified period of time is a challenging problem. This paper discusses the certification of Nesterov’s fast gradient method for problems with a strictly quadratic objective and a feasible set given ...
Vision is a natural tool for human-computer interaction, since it pro- vides visual feedback to the user and mimics some human behaviors. It requires however the fast and robust computation of motion primi- tives, which remains a difficult problem. In this ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2011
We investigate a compressive sensing system in which the sensors introduce a distortion to the measurements in the form of unknown gains. We focus on blind calibration, using measures performed on a few unknown (but sparse) signals. We extend our earlier s ...
We propose an algorithmic framework for convex minimization problems of a composite function with two terms: a self-concordant function and a possibly nonsmooth regularization term. Our method is a new proximal Newton algorithm that features a local quadra ...
In this work, we exploit the fact that wavelets can represent magnetic resonance images well, with relatively few coefficients. We use this property to improve magnetic resonance imaging (MRI) reconstructions from undersampled data with arbitrary k-space t ...
Institute of Electrical and Electronics Engineers2011
This paper investigates the influence of the choice of the cost function in the optimal control formulation for an air-to-water heat pump system. The aim is to minimize, under given thermal comfort requirements, the electricity consumption which is calcula ...
Real-Time Optimization (RTO) via modifier adaptation is a class of methods for which measurements are used to iteratively adapt the model via input-affine additive terms. The modifier terms correspond to the deviations between the measured and predicted co ...