LogarithmIn mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.
Law of large numbersIn probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed. The LLN is important because it guarantees stable long-term results for the averages of some random events.
Log semiringIn mathematics, in the field of tropical analysis, the log semiring is the semiring structure on the logarithmic scale, obtained by considering the extended real numbers as logarithms. That is, the operations of addition and multiplication are defined by conjugation: exponentiate the real numbers, obtaining a positive (or zero) number, add or multiply these numbers with the ordinary algebraic operations on real numbers, and then take the logarithm to reverse the initial exponentiation. Such operations are also known as, e.
Decade (log scale)One decade (symbol dec) is a unit for measuring ratios on a logarithmic scale, with one decade corresponding to a ratio of 10 between two numbers. Scientific notation When a real number like .007 is denoted alternatively by 7.0 × 10—3 then it is said that the number is represented in scientific notation. More generally, to write a number in the form a × 10b, where 1 < a < 10 and b is an integer, is to express it in scientific notation, and a is called the significand or the mantissa, and b is its exponent.
Companion matrixIn linear algebra, the Frobenius companion matrix of the monic polynomial is the square matrix defined as Some authors use the transpose of this matrix, , which is more convenient for some purposes such as linear recurrence relations (see below). is defined from the coefficients of , while the characteristic polynomial as well as the minimal polynomial of are equal to . In this sense, the matrix and the polynomial are "companions". Any matrix A with entries in a field F has characteristic polynomial , which in turn has companion matrix .