Edge-localized mode avoidance and pedestal structure in I-mode plasmas
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The deployment of high power radio frequency waves in the ion cyclotron range (ICRF) constitutes an important operational facility in many plasma devices, including ITER. Any charged particle describes a helical motion around a given magnetic field line, t ...
Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly couple ...
The ultimate goal of magnetic confinement fusion research is to develop an electricity producing power plant based on thermonuclear fusion reactions. Among the most promising magnetic confinement devices, as leading concepts for future power plants, are to ...
Magnetohydrodynamic (MHD) instabilities and plasma rotation have various impacts on particle and thermal transport in toroidal plasmas. MHD instabilities degrade the confinement, limit the maximum achievable plasma pressure, and can lead to plasma disrupti ...
A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. ...
Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present the ...
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak à Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse ...
Recently at JET a pure helium campaign has been performed. The exploration of the density limit in L-mode limiter as well as L-mode and H-mode diverted plasmas was one of the main objectives. In L-mode plasmas the density can be increased until the total r ...
The need of durable, economically acceptable and safe energy sources continues to stimulate studies in a field of thermonuclear fusion. The most successful solution for controlled magnetic fusion is the tokamak. The improvement of tokamak performance depen ...
Developments in the real time control hardware on Tokamak à Configuration Variable (TCV) coupled with the flexibility of plasma shaping and electron cyclotron (EC) heating and current drive actuators are opening many opportunities to perform real time expe ...