Publication

An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

Andrea Manzoni
2017
Journal paper
Abstract

In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity omega(e) (where the coefficients of the equation are altered) located inside a domain Omega starting from observations of the potential on the boundary partial derivative Omega. Such a problem is related to the detection of myocardial ischemic regions, characterized by severely reduced blood perfusion and consequent lack of electric conductivity. In the first part of the paper we provide an asymptotic formula for electric potential perturbations caused by internal conductivity inhomogeneities of low volume fraction in the case of three-dimensional, parabolic problems. In the second part we implement a reconstruction procedure based on the topological gradient of a suitable cost functional. Numerical results obtained on an idealized three- dimensional left ventricle geometry for different measurement settings assess the feasibility and robustness of the algorithm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.