A patient-specific aortic valve model based on moving resistive immersed implicit surfaces
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Aortic diseases are characterized by dire prognosis and inadequate diagnosis, owing to their insidious yet lethal nature. Aortopathies, namely aortic aneurysms and dissections, along with certain congenital diseases, might necessitate surgical replacement ...
Computational fluid dynamics (CFD) is an important tool for the simulation of the cardiovascular function and dysfunction. Due to the complexity of the anatomy, the transitional regime of blood flow in the heart, and the strong mutual influence between the ...
To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...
In order to show the advantage and potential of propagation-based phase-contrast synchrotron imaging in vascular pathology research, we analyzed aortic medial ruptures in BAPN/AngII-infused mice, a mouse model for aortic dissection. Ascending and thoraco-a ...
NATURE PUBLISHING GROUP2018
,
We construct an idealized computational model of the left human heart for the study of the blood flow dynamics in the left atrium and ventricle. We solve the Navier-Stokes equations in the ALE formulation and we prescribe the left heart wall displacement b ...
A space-time adaptive algorithm to solve the motion of a rigid disk in an incompressible Newtonian fluid is presented, which allows collision or quasi-collision processes to be computed with high accuracy. In particular, we recover the theoretical result p ...
This manuscript discusses discretization of the Vlasov-Poisson system in 2D+2V phase space using high-order accurate conservative finite difference algorithms. One challenge confronting direct kinetic simulation is the significant computational cost associ ...
In this work, we study the blood flow dynamics in idealized left ventricles (LV) of the human heart modelled by the Navier-Stokes equations with mixed time varying boundary conditions. The latter are introduced for simulating the functioning of the aortic ...
In this thesis, a computational approach is used to study two-phase flow including phase change by direct numerical simulation.
This approach follows the interface with an adaptive moving mesh.
The incompressible Navier-Stokes equations are solved, in tw ...
The mathematical modeling of the heart involves several challenges, which are intrinsically related to the complexity of its function. A satisfactory cardiac model must be able to describe a wide range of different processes, such as the evolution of the t ...