Medial magmaIn abstract algebra, a medial magma or medial groupoid is a magma or groupoid (that is, a set with a binary operation) which satisfies the identity or more simply for all x, y, u and v, using the convention that juxtaposition denotes the same operation but has higher precedence. This identity has been variously called medial, abelian, alternation, transposition, interchange, bi-commutative, bisymmetric, surcommutative, entropic etc. Any commutative semigroup is a medial magma, and a medial magma has an identity element if and only if it is a commutative monoid.
Quotient (universal algebra)In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure.
Isotopy of loopsIn the mathematical field of abstract algebra, isotopy is an equivalence relation used to classify the algebraic notion of loop. Isotopy for loops and quasigroups was introduced by , based on his slightly earlier definition of isotopy for algebras, which was in turn inspired by work of Steenrod. Each quasigroup is isotopic to a loop. Let and be quasigroups. A quasigroup homotopy from Q to P is a triple (α, β, γ) of maps from Q to P such that for all x, y in Q. A quasigroup homomorphism is just a homotopy for which the three maps are equal.
Exclusive orExclusive or or exclusive disjunction or exclusive alternation, also known as non-equivalence which is the negation of equivalence, is a logical operation that is true if and only if its arguments differ (one is true, the other is false). It is symbolized by the prefix operator and by the infix operators XOR (ˌɛks_ˈɔ:r, ˌɛks_ˈɔ:, 'ksɔ:r or 'ksɔ:), EOR, EXOR, , , , ⩛, , and . It gains the name "exclusive or" because the meaning of "or" is ambiguous when both operands are true; the exclusive or operator excludes that case.
N-ary groupIn mathematics, and in particular universal algebra, the concept of an n-ary group (also called n-group or multiary group) is a generalization of the concept of a group to a set G with an n-ary operation instead of a binary operation. By an n-ary operation is meant any map f: Gn → G from the n-th Cartesian power of G to G. The axioms for an n-ary group are defined in such a way that they reduce to those of a group in the case n = 2.
Syntactic monoidIn mathematics and computer science, the syntactic monoid of a formal language is the smallest monoid that recognizes the language . The free monoid on a given set is the monoid whose elements are all the strings of zero or more elements from that set, with string concatenation as the monoid operation and the empty string as the identity element. Given a subset of a free monoid , one may define sets that consist of formal left or right inverses of elements in .
Ergodic processIn physics, statistics, econometrics and signal processing, a stochastic process is said to be in an ergodic regime if an observable's ensemble average equals the time average. In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime. Conversely, a process that is not in ergodic regime is said to be in non-ergodic regime. One can discuss the ergodicity of various statistics of a stochastic process.
Magma (algebra)In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed. The term groupoid was introduced in 1927 by Heinrich Brandt describing his Brandt groupoid (translated from the German Gruppoid). The term was then appropriated by B. A. Hausmann and Øystein Ore (1937) in the sense (of a set with a binary operation) used in this article.