**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Strengths and Limitations of Linear Programming Relaxations

Abstract

Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable candidates for outperforming the current state-of-the-art approximation guarantees for NP-hard problems, for which there still exists a gap between the inapproximability results and the approximation guarantees that we know how to achieve in polynomial time. In this thesis, we address both the power and the limitations of these relaxations, as well as the connection between the shortcomings of these relaxations and the inapproximability of the underlying problem. In the first part, we study the limitations of LP relaxations of well-known graph problems such as the Vertex Cover problem and the Independent Set problem. We prove that any small LP relaxation for the aforementioned problems, cannot have an integrality gap strictly better than $2$ and $\omega(1)$, respectively. Furthermore, our lower bound for the Independent Set problem also holds for any SDP relaxation. Prior to our work, it was only known that such LP relaxations cannot have an integrality gap better than $1.5$ for the Vertex Cover Problem, and better than $2$ for the Independent Set problem. In the second part, we study the so-called knapsack cover inequalities that are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield LP relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. We address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. In the last part, we show a close connection between structural hardness for k-partite graphs and tight inapproximability results for scheduling problems with precedence constraints. This connection is inspired by a family of integrality gap instances of a certain LP relaxation. Assuming the hardness of an optimization problem on k-partite graphs, we obtain a hardness of $2-\varepsilon$ for the problem of minimizing the makespan for scheduling with preemption on identical parallel machines, and a super constant inapproximability for the problem of scheduling on related parallel machines. Prior to this result, it was only known that the first problem does not admit a PTAS, and the second problem is NP-hard to approximate within a factor strictly better than 2, assuming the Unique Games Conjecture.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related concepts (13)

Related publications (14)

Related MOOCs (11)

Approximation algorithm

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.

Optimization problem

In mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.

Linear programming

Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.

Loading

Loading

Loading

Linear and Discrete Optimization

This advanced undergraduate course treats basic principles on linear programming like the simplex algorithm, its complexity, and duality. Furthermore it gives an introduction on discrete optimization

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

An integer program (IP) is a problem of the form $\min \{f(x) : \, Ax = b, \ l \leq x \leq u, \ x \in \Z^n\}$, where $A \in \Z^{m \times n}$, $b \in \Z^m$, $l,u \in \Z^n$, and $f: \Z^n \rightarrow \Z$

Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine l

In this thesis we give new algorithms for two fundamental graph problems. We develop novel ways of using linear programming formulations, even exponential-sized ones, to extract structure from problem