Publication

Pd(0)-Catalysed C-H Functionalisations for the Enantioselective Synthesis of N-Heterocycles

Julia Pedroni
2017
EPFL thesis
Abstract

Transition-metal catalysed enantioselective C–H functionalisations enable rapid increase of molecular complexity via non-classical disconnections. This thesis describes the development of intramolecular Pd(0)-catalysed C-H functionalisations for the asymmetric synthesis of relevant N-heterocyclic scaffolds. Dihydroisoquinolinones were prepared by arylation of corresponding cyclopropane-containing bromobenzamides. Using the cyclopropane arylation approach, an expedient enantioselective route to the beclabuvir ring system was developed. The implementation of chloroacetamides as electrophilic partners provided an enantioselective entry toward four- and five-membered chiral lactams by functionalisation of benzylic or cyclopropane C-H bonds. Cyclisation of the trifluoroacetimidoyl chlorides afforded chiral cyclopropane-fused cyclic CF3-ketimines. The latter represent a convenient platform for the synthesis of trifluoromethylated pyrrolidines. Trifluoroacetimidoyl chlorides from toluidines delivered 2-trifluoromethyl indoles. Simple starting material synthesis coupled with the high efficiency of developed transformations establish Pd(0)-catalysed C-H cyclisations as a practical approach for the preparation of 4- to 7-membered N-heterocycles.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.