Publication

Evaluating the need for energy storage to enhance autonomy of neighborhoods

Abstract

Energy storage is generally considered as a means to bridge a period between when/where energy is available and when/where it is in demand. Storage plays an important role by providing flexibility to energy systems, increasing the potential to accommodate variable renewables generation and improving management of electricity networks. However, currently it remains unclear when and under which conditions energy storage can be profitably operated at a district level. The present study aims to quantify the level of integration of solar energy and storage in the Junction district of Geneva. A simulation tool is developed to investigate the techno-economical and environmental assessment under different scenarios. For a given investment over 20 years, the model calculates the levelized cost of electricity (LCOE), the autonomy level as well as the CO2 emissions. Given the assumptions of the model, four scenarios are analysed based on the combination of solar PV, storage, solar thermal and heat pump to find out an economically optimal configuration in terms of system size. A comparison with the Homer software is performed to test the robustness of the solar PV and battery model. The economic profitability of solar PV and battery system is in very good agreement with Homer and the autonomy level is validated by using a simulation tool created by SI-REN (Services Industriels des Energies Renouvelables de Lausanne). However, combining solar PV with battery system doesn’t bring additional autonomy to the model for Geneva study case. Under the assumptions of the model, to foster investments in solar PV and battery installations, falling investments costs seem necessary for the future. A reduction gap between buying and selling price in grid for solar panel is recommended to increase solar installations. A validated simulation tool has been developed in this work and provide a reliable based that will be extended in the future to include the thermal demand and production. The availability of thermal storage at a large scale as well as the production over a district should further increase the autonomy of the district.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Thermal energy storage
Thermal energy storage (TES) is achieved with widely different technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning (Seasonal thermal energy storage).
Solar panel
A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that generate electrons when exposed to light. The electrons flow through a circuit and produce direct current (DC) electricity, which can be used to power various devices or be stored in batteries. Solar panels are also known as solar cell panels, solar electric panels, or PV modules. Solar panels are usually arranged in groups called arrays or systems.
Photovoltaic system
A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery.
Show more
Related publications (145)
Related MOOCs (10)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.