A molecular quantum spin network controlled by a single qubit
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This disclosure relates to quantum electronic devices for storing qubits. In particular, this disclosure relates to a quantum electronic device comprising a carbon nanosphere adapted to store a qubit represented by an electron spin and a control and readou ...
Quantum computers1 could revolutionize computing in a profound way due to the massive speedup they promise. A quantum computer comprises a cryogenic quantum processor and a classical electronic controller. When scaling up the cryogenic quantum processor to ...
A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows fo ...
Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and sub ...
Quantum engineering is an emerging discipline, which involves studies of materials, devices, circuits, and architectures that are necessary to develop quantum-based systems. Recently, quantum computing has received significant attention, and large investme ...
In recent years, the ability of cold atom experiments to explore condensed-matter-related questions has dramatically progressed. Transport experiments, in particular, have expanded to the point in which conductance and other transport coefficients can now ...
Microcavity polaritons are hybrid quasiparticles emerging from the strong coupling between quantum well excitons and light in the resonator. Their unique half-light half-matter nature brings in specific properties like low effective mass, nonlinearity due ...
Quantum computing holds the promise to achieve unprecedented computation power and to solve problems today intractable. State-of-the-art quantum processors consist of arrays of quantum bits (qubits) operating at a very low base temperature, typically a few ...
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coheren ...
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field f ...