Publication

Long-term design of FRP-PUR web-core sandwich structures in building construction

Abstract

The structural behavior of GFRP-polyurethane (PUR) web-core sandwich structures subjected to sustained loading was investigated. As a basis, a study of the mechanical behavior of rigid PUR foams used as core materials was conducted, with emphasis on creep. The study showed that the foam anisotropy, its density and the loading type applied must be considered to assess the structural performance of the GFRP-PUR web-core sandwich. The influence of creep on the web-core interaction, i.e. on the shear load distribution and local instability phenomena were then analyzed. The effects of applying particular design recommendations on the design were assessed based on the example of a real GFRP-PUR sandwich roof. The design shear resistance of the GFRP webs, their dimensions and governing failure mode significantly depended on the applied recommendation. A design procedure to evaluate the overall shear resistance of the GFRP-PUR core over time, taking into account creep effects, was presented. (C) 2017 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.