Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We evaluated whether the genetic background of embryonic stem cells (ESCs) affects the properties suitable for three-dimensional (3D) synthetic scaffolds for cell self-renewal. Inbred R1 and hybrid B6D2F1 mouse ESC lines were cultured for 7 days in hydrogel scaffolds with different properties derived from conjugating 7.5, 10, 12.5, or 15% (wt/vol) vinylsulfone-functionalized three-, four-, or eight-arm polyethylene glycol (PEG) with dicysteine-containing crosslinkers with an intervening matrix metalloproteinase-specific cleavage sites. Cell proliferation and expression of self-renewal-related genes and proteins by ESCs cultured in feeder-free or containing 2D culture plate or 3D hydrogel were monitored. As a preliminary experiment, the E14 ESC-customized synthetic 3D microenvironment did not maintain self-renewal of either the R1 or B6D2F1 ESCs. The best R1 cell proliferation (10.04 vs. 0.16-4.39; p
, , , , , , ,
Luc Reymond, Fabien Kuttler, Milena Maria Schuhmacher, Daria Korotkova, Manon Sandra Bardyn, Triana Amen
Mahmut Selman Sakar, Ece Özelçi, Berna Ayse Özkale Edelmann, Christina Myra Tringides