Input–output memory management unitIn computing, an input–output memory management unit (IOMMU) is a memory management unit (MMU) connecting a direct-memory-access–capable (DMA-capable) I/O bus to the main memory. Like a traditional MMU, which translates CPU-visible virtual addresses to physical addresses, the IOMMU maps device-visible virtual addresses (also called device addresses or memory mapped I/O addresses in this context) to physical addresses. Some units also provide memory protection from faulty or malicious devices.
Unconventional computingUnconventional computing is computing by any of a wide range of new or unusual methods. It is also known as alternative computing. The term unconventional computation was coined by Cristian S. Calude and John Casti and used at the First International Conference on Unconventional Models of Computation in 1998. The general theory of computation allows for a variety of models. Computing technology first developed using mechanical systems and then evolved into the use of electronic devices.
Interrupt latencyIn computing, interrupt latency refers to the delay between the start of an Interrupt Request (IRQ) and the start of the respective Interrupt Service Routine (ISR). For many operating systems, devices are serviced as soon as the device's interrupt handler is executed. Interrupt latency may be affected by microprocessor design, interrupt controllers, interrupt masking, and the operating system's (OS) interrupt handling methods. There is usually a trade-off between interrupt latency, throughput, and processor utilization.
OpenMPOpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.
Multiple instruction, multiple dataIn computing, multiple instruction, multiple data (MIMD) is a technique employed to achieve parallelism. Machines using MIMD have a number of processors that function asynchronously and independently. At any time, different processors may be executing different instructions on different pieces of data. MIMD architectures may be used in a number of application areas such as computer-aided design/computer-aided manufacturing, simulation, modeling, and as communication switches.
Project planningProject planning is part of project management, which relates to the use of schedules such as Gantt charts to plan and subsequently report progress within the project environment. Project planning can be done manually or by the use of project management software. Initially, the project scope is defined and the appropriate methods for completing the project are determined. Following this step, the durations for the various tasks necessary to complete the work are listed and grouped into a work breakdown structure.
SpeedupIn computer architecture, speedup is a number that measures the relative performance of two systems processing the same problem. More technically, it is the improvement in speed of execution of a task executed on two similar architectures with different resources. The notion of speedup was established by Amdahl's law, which was particularly focused on parallel processing. However, speedup can be used more generally to show the effect on performance after any resource enhancement.
Grid computingGrid computing is the use of widely distributed computer resources to reach a common goal. A computing grid can be thought of as a distributed system with non-interactive workloads that involve many files. Grid computing is distinguished from conventional high-performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed (thus not physically coupled) than cluster computers.
Quantum computingA quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer.
System on a chipA system on a chip or system-on-chip (SoC ,ˈɛsoʊsiː; pl. SoCs ,ˈɛsoʊsiːz) is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices, input/output interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip.