Discovery and Temporal Analysis of Latent Study Patterns from MOOC Interaction Sequences
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous Graph Neural Networks (GNN) require a large number of labeled ...
New York2023
There is a growing recognition that electronic band structure is a local property of materials and devices, and there is steep growth in capabilities to collect the relevant data. New photon sources, from small-laboratory-based lasers to free electron lase ...
We propose a stochastic conditional gradient method (CGM) for minimizing convex finitesum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully inc ...
Electrofacies using well logs play a vital role in reservoir characterization. Often, they are sorted into clusters according to the self-similarity of input logs and do not capture the known underlying physical process. In this paper, we propose an unsupe ...
We present a discriminative clustering approach in which the feature representation can be learned from data and moreover leverage labeled data. Representation learning can give a similarity-based clustering method the ability to automatically adapt to an ...
Topic models are useful tools for analyzing and interpreting the main underlying themes of large corpora of text. Most topic models rely on word co-occurrence for computing a topic, i.e., a weighted set of words that together represent a high-level semanti ...
The increasing amount of data collected in online learning environments provides unique opportunities to better understand the learning processes in different educational settings. Learning analytics research aims at understanding and optimizing learning a ...
Data is pervasive in today's world and has actually been for quite some time. With the increasing volume of data to process, there is a need for faster and at least as accurate techniques than what we already have. In particular, the last decade recorded t ...
The large-scale and granular interaction data collected in online learning platforms such as massive open online courses (MOOCs) provide unique opportunities to better understand individuals' learning processes and could facilitate the design of personaliz ...
Recent advances in transfer learning and few-shot learning largely rely on annotated data related to the goal task during (pre-)training. However, collecting sufficiently similar and annotated data is often infeasible. Building on advances in self-supervis ...