Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol
Related publications (65)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Mg(BH4)2 exhibits a high hydrogen content of 14.9 wt% and thermodynamic stability in the overall decomposition reaction that corresponds to hydrogen desorption at around room temperature. However, the potential applications in hydrogen storage are restrict ...
The efficient storage of hydrogen is one of three major hurdles towards a potential hydrogen economy. This report begins with conventional storage methods for hydrogen and broadly covers new technology, ranging from physical media involving solid adsorbent ...
Molecular hydrogen is a promising candidate to replace fossil fuels as the energy carrier. Hydrogen does not exist in its molecular form on earth and must therefore be generated, starting from hydrogen-rich compounds. Water would be a renewable resource fo ...
The bcc alloy V40(TiCr)51Fe8Mn shows a high reversible hydrogen capacity of 2.22 mass% at room temperature and is therefore expected to be applied as a hydrogen storage material. During the first 10 hydrogenation/dehydrogenation cycles, the capacity decrea ...
Hydrogen holds the potential to be an alternative to replace fossil fuels in the future. The tremendous research effort dedicated to the issue of hydrogen storage has led to considerable advancements in the development of both adsorption materials and chem ...
Formic acid has recently been suggested as a promising hydrogen storage material. The basic concept is briefly discussed and the recent advances in the development of formic acid dehydrogenation catalysts are shown. Both the state of research for heterogen ...
Complex hydrides such as LiBH4 and LiNH2 exceed the gravimetric hydrogen density of transition metal hydrides by one order of magnitude. However, hydrogen in complex hydrides is covalently bound and arranged in subunits e.g. [NH2]- and [BH4] - with a fixed ...
In water, spin–lattice relaxation times (T1) and calibration curves for chemical shifts have been determined for the 13C and the 1H (C) atoms in HCOOH, HCOONa, CO2, Na2CO3 and NaHCO3 by NMR spectroscopy. These data facilitate kinetic and mechanistic studie ...
Y(BH4)3 is one of the candidates for solid-state hydrogen storage, which contains 9.06 wt% of hydrogen. In this study, the thermal properties of Y(BH4)3 synthesized via two different methods are extensively examined. One method relies on the solid-solid me ...
The goal of this rapport is to present an overview of the different hydrogen storage technologies, currently available for industrial application or at earlier stages of development. In order to identify the water and mechanical work requirements for compr ...