Optimal combination rules for adaptation and learning over networks
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper introduces Wireless IoT-based Noise Cancellation (WINC) which defines a framework for leveraging a wireless network of IoT microphones to enhance active noise cancellation in noise-canceling headphones. The IoT microphones forward ambient noise ...
Ion transport through biological and solid-state nanochannels is known to be a highly noisy process. The power spectrum of current fluctuations is empirically known to scale like the inverse of frequency, following the long-standing yet poorly understood H ...
Human thermo-physiology models (HTPM) are useful tools to assess dynamic and non-uniform human thermal states. However, they are developed based on the physiological data of an average person. In this paper, we present a detailed evaluation of two sophisti ...
This thesis is situated at the crossroads between machine learning and control engineering. Our contributions are both theoretical, through proposing a new uncertainty quantification methodology in a kernelized context; and experimental, through investigat ...
Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...
We present a statistical framework to benchmark the performance of reconstruction algorithms for linear inverse problems, in particular, neural-network-based methods that require large quantities of training data. We generate synthetic signals as realizati ...
Reinterpretable cameras are defined by their post-processing capabilities that exceed traditional imaging. We present "SoDaCam" that provides reinterpretable cameras at the granularity of photons, from photon-cubes acquired by single-photon devices. Photon ...
The objective of this paper is to investigate a new numerical method for the approximation of the self-diffusion matrix of a tagged particle process defined on a grid. While standard numerical methods make use of long-time averages of empirical means of de ...
In this paper, we investigate federated contextual linear bandit learning within a wireless system that comprises a server and multiple devices. Each device interacts with the environment, selects an action based on the received reward, and sends model upd ...
We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the ...