Unbiased Model Combinations for Adaptive Filtering
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Adaptive networks consist of a collection of nodes with adaptation and learning abilities. The nodes interact with each other on a local level and diffuse information across the network to solve estimation and inference tasks in a distributed manner. In th ...
We present diffusion algorithms for distributed estimation and detection over networks that endow all nodes with both spatial cooperation abilities and temporal processing abilities. Each node in the network is allowed to share information locally with its ...
We study the problem of distributed least-squares estimation over ad hoc adaptive networks, where the nodes have a common objective to estimate and track a parameter vector. We consider the case where there is stationary additive colored noise on both the ...
Integral observers are useful tools for estimating the plant states in the presence of non-vanishing disturbances resulting from plant-model mismatch and exogenous disturbances. It is well known that these observers can eliminate bias in all states, given ...
Motivated by the need to smooth and to summarize multiple simultaneous time series arising from networks of environmental monitors, we propose a hierarchical wavelet model for which estimation of hyperparameters can be performed by marginal maximum likelih ...
In this work, we study the mean-square-error performance of a diffusion strategy for continuous-time estimation over networks. We derive differential equations that describe the evolution of the mean and correlation of the weight-error vector, and provide ...
We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds ...
Institute of Electrical and Electronics Engineers2011
We present a comprehensive study of linear prediction residual for speaker diarization on single and multiple distant microphone conditions in privacy-sensitive settings, a requirement to analyze a wide range of spontaneous conversations. Two representatio ...
We present a diffusion-based bias-compensated recursive least squares (RLS) algorithm for distributed estimation in ad-hoc adaptive sensor networks where nodes cooperate to estimate a common deterministic parameter vector. It is assumed that both the regre ...
In principal component regression (PCR) and partial least-squares regression (PLSR), the use of unlabeled data, in addition to labeled data, helps stabilize the latent subspaces in the calibration step, typically leading to a lower prediction error. A non- ...