**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Adaptive stochastic convex optimization over networks

Abstract

In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a distributed diffusion algorithm based on penalty methods that allows the network to cooperatively optimize a global cost function, subject to all constraints and without using projection steps. We show that when sufficiently small step-sizes are employed, the expected distance between the optimal solution vector and that obtained at each node in the network can be made arbitrarily small.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (11)

Related concepts (28)

Related publications (38)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

Optimization: principles and algorithms - Linear optimization

Introduction to linear optimization, duality and the simplex algorithm.

Convex optimization

Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.

Constraint (mathematics)

In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. The following is a simple optimization problem: subject to and where denotes the vector (x1, x2). In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function).

Mathematical optimization

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...

Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...

Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...