General-purpose computing on graphics processing unitsGeneral-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU). The use of multiple video cards in one computer, or large numbers of graphics chips, further parallelizes the already parallel nature of graphics processing.
Graphics processing unitA graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and (either on a video card or embedded on the motherboards, mobile phones, personal computers, workstations, and game consoles). After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.
Graphics cardA graphics card (also called a video card, display card, graphics adapter, VGA card/VGA, video adapter, display adapter, or colloquially GPU) is a computer expansion card that generates a feed of graphics output to a display device such as a monitor. Graphics cards are sometimes called discrete or dedicated graphics cards to emphasize their distinction to integrated graphics processor on the motherboard or the CPU.
Parallel computingParallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Graphics Core NextGraphics Core Next (GCN) is the codename for a series of microarchitectures and an instruction set architecture that were developed by AMD for its GPUs as the successor to its TeraScale microarchitecture. The first product featuring GCN was launched on January 9, 2012. GCN is a reduced instruction set SIMD microarchitecture contrasting the very long instruction word SIMD architecture of TeraScale. GCN requires considerably more transistors than TeraScale, but offers advantages for general-purpose GPU (GPGPU) computation due to a simpler compiler.
Physics processing unitA physics processing unit (PPU) is a dedicated microprocessor designed to handle the calculations of physics, especially in the physics engine of video games. It is an example of hardware acceleration. Examples of calculations involving a PPU might include rigid body dynamics, soft body dynamics, collision detection, fluid dynamics, hair and clothing simulation, finite element analysis, and fracturing of objects. The idea is having specialized processors offload time-consuming tasks from a computer's CPU, much like how a GPU performs graphics operations in the main CPU's place.
Vision processing unitA vision processing unit (VPU) is (as of 2023) an emerging class of microprocessor; it is a specific type of AI accelerator, designed to accelerate machine vision tasks. Vision processing units are distinct from video processing units (which are specialised for video encoding and decoding) in their suitability for running machine vision algorithms such as CNN (convolutional neural networks), SIFT (scale-invariant feature transform) and similar.
Direct memory accessDirect memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU). Without DMA, when the CPU is using programmed input/output, it is typically fully occupied for the entire duration of the read or write operation, and is thus unavailable to perform other work. With DMA, the CPU first initiates the transfer, then it does other operations while the transfer is in progress, and it finally receives an interrupt from the DMA controller (DMAC) when the operation is done.
OpenCLOpenCL (Open Computing Language) is a framework for writing programs that execute across heterogeneous platforms consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other processors or hardware accelerators. OpenCL specifies programming languages (based on C99, C++14 and C++17) for programming these devices and application programming interfaces (APIs) to control the platform and execute programs on the compute devices.
Synchronization (computer science)In computer science, synchronization refers to one of two distinct but related concepts: synchronization of processes, and synchronization of data. Process synchronization refers to the idea that multiple processes are to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. Data synchronization refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity.