Categorical distributionIn probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution, (e.g. 1 to K).
Sampling distributionIn statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic. If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling distribution is the probability distribution of the values that the statistic takes on.
Poisson distributionIn probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson ('pwɑːsɒn; pwasɔ̃). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.
Convergent seriesIn mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted The nth partial sum Sn is the sum of the first n terms of the sequence; that is, A series is convergent (or converges) if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number.
Continuous uniform distributionIn probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. The bounds are defined by the parameters, and which are the minimum and maximum values. The interval can either be closed (i.e. ) or open (i.e. ). Therefore, the distribution is often abbreviated where stands for uniform distribution.
Type theoryIn mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general, type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation, a common one is Thierry Coquand's Calculus of Inductive Constructions.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Likelihood functionIn statistical inference, the likelihood function quantifies the plausibility of parameter values characterizing a statistical model in light of observed data. Its most typical usage is to compare possible parameter values (under a fixed set of observations and a particular model), where higher values of likelihood are preferred because they correspond to more probable parameter values.
Type safetyIn computer science, type safety and type soundness are the extent to which a programming language discourages or prevents type errors. Type safety is sometimes alternatively considered to be a property of facilities of a computer language; that is, some facilities are type-safe and their usage will not result in type errors, while other facilities in the same language may be type-unsafe and a program using them may encounter type errors.
IterationIteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. In mathematics and computer science, iteration (along with the related technique of recursion) is a standard element of algorithms. In mathematics, iteration may refer to the process of iterating a function, i.e. applying a function repeatedly, using the output from one iteration as the input to the next.