Grain boundaries and quantum transport in monolayer MoS2
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nowadays, the interest in 2D materials has gone far beyond graphene. Specially, monolayers of transition metal dichalcogenides (TMDs) offer a broad spectrum of electronic and optical properties, and show the potential to revolutionize the electronics indus ...
In the past half-century, the semiconductor industry has relied on the scaling of complementary metal-oxide-semiconductor (CMOS) transistor dimensions and on material and geometrical innovations to increase the computational density. Approaching the end of ...
Recent technical progress demonstrates the possibility of stacking together virtually any combination of atomically thin crystals of van der Waals bonded compounds to form new types of heterostructures and interfaces. As a result, there is the need to unde ...
Liquid phase exfoliation is a commonly used method to produce 2D nanosheets from a range of layered crystals. However, such nanosheets display broad size and thickness distributions and correlations between area and thickness, issues that limit nanosheet a ...
Electrical charges can generate photon emission in nanoscale quantum systems by two independent mechanisms. First, radiative recombination of pairs of oppositely charged carriers generates sharp excitonic lines. Second, coupling between currents and collec ...
We propose and experimentally demonstrate double-gated n-type WSe 2 FETs with excellent top gate high-k dielectric layer. Under back gate control, the devices behave as n-type enhancement transistors, with ON/OFF current ratios larger than 6 orders of magn ...
Harvesting non-equilibrium hot carriers from photo-excited metal nanoparticles has enabled plasmon-driven photochemical transformations and tunable photodetection with resonant nanoantennas. Despite numerous studies on the ultrafast dynamics of hot electro ...
Two-dimensional (2D) materials have received tremendous research attention recently, as they possess peculiar physical properties in their monolayer and few-layer forms, which further lead to novel applications. A wide range of 2D materials covers insulato ...
Geometric electron optics may be implemented in solids when electron transport is ballistic on the length scale of a device. Currently, this is realized mainly in 2D materials characterized by circular Fermi surfaces. Here we demonstrate that the nearly pe ...
This paper investigates energy filtering in silicon nanowires and nanosheets by resonant electron tunneling through a geometric superlattice. A geometric superlattice is any kind of periodic geometric feature along the transport direction of the nanowire o ...