Publication

Localized Structures in Indented Shells: A Numerical Investigation

Abstract

We present results from a numerical investigation of the localization of deformation in thin elastomeric spherical shells loaded by differently shaped indenters. Beyond a critical indentation, the deformation of the shell ceases to be axisymmetric and sharp structures of localized curvature form, referred to as “s-cones,” for “shell-cones.” We perform a series of numerical experiments to systematically explore the parameter space. We find that the localization process is independent of the radius of the shell. The ratio of the radius of the shell to its thickness, however, is an important parameter in the localization process. Throughout, we find that the maximum principal strains remain below 6%, even at the s-cones. As a result, using either a linear elastic (LE) or hyperelastic constitutive description yields nearly indistinguishable results. Friction between the indenter and the shell is also shown to play an important role in localization. Tuning this frictional contact can suppress localization and increase the load-bearing capacity of the shell under indentation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.