Publication

The role of Snail in non-small cell lung cancer

Abstract

The epithelial-to-mesenchymal transition (EMT) is a developmental program frequently reactivated in cancer. It plays an important role in several aspects of tumor progression, particularly in the acquisition of invasive capacities facilitating metastasis. Beyond invasion, EMT endows cancer cells with additional characteristics essential for metastatic dissemination and has been extensively studied in breast and colorectal cancer. Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide and the majority of NSCLC patients is diagnosed with metastatic disease. The expression of the key EMT transcription factor Snail is correlated with a poor prognosis in NSCLC patients, while it is unclear whether Snail contributes to disease progression by actually facilitating metastasis formation.

During EMT, the metabolism of a cancer cell changes, likely to meet the environmental challenges faced during the metastatic process. In this line, we have previously reported (Masin et al, 2014) that the glucose transporter GLUT3 is upregulated during EMT in human NSCLC cell lines. Here, we demonstrate that the rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP) correlates with GLUT3 in NSCLC. This pathway produces a substrate for O-linked protein GlcNAcylations important during EMT, as they – for example – stabilize the Snail protein. Glutamine-fructose-6-phosphate amidotransferase 2 (GFPT2) was specifically upregulated during EMT, while its isoenzyme GFPT1 was unaffected. Furthermore, our results points towards a putative regulation of GLUT3 expression by GFPT2, possibly involving STAT3 signaling. We thus provide evidence for a possible reactivation of a developmental metabolic program during EMT in NSCLC.

Chronic inflammation is an important disease-promoting factor during lung tumorigenesis, emphasizing the role of the immune system in this cancer type. Overexpressing or silencing Snail in the immunocompetent autochthonous KrasLSL-G12D/+;p53fl/fl mouse model of lung adenocarcinoma uncovered a substantial influence of Snail on the tumor microenvironment. An extensive analysis of tumor histology, gene and protein expression and immune infiltration revealed that while Snail did not contribute to metastasis formation, it accelerated growth and malignant progression of the lung tumors, reducing the survival time of the mice. Snail decreased B lymphocyte, while enhancing neutrophil infiltration of the tumors. Intriguingly, through the secretion of a soluble factor, Snail induced a feed-forward loop of neutrophil recruitment via Cxcl2, produced by neutrophils themselves. In our recently published collaborative work (Faget, Groeneveld et al, 2017), we identified neutrophils as main contributors to disease progression. We furthermore provided evidence for a vicious cycle formed between Snail expressing cancer cells and neutrophils in lung tumors, as neutrophils were found to impair angiogenesis, resulting in hypoxia and enhanced Snail expression.

In addition, we found that Snail repressed the Dlk1-Dio3 locus, containing the genome’s largest miRNA cluster and recently implicated in NSCLC, in tumor-infiltrating immune cells via a paracrine mechanism.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (56)
Epithelial–mesenchymal transition
The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis in cancer progression.
Cancer
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bleeding, prolonged cough, unexplained weight loss, and a change in bowel movements. While these symptoms may indicate cancer, they can also have other causes. Over 100 types of cancers affect humans. Tobacco use is the cause of about 22% of cancer deaths.
Tumor microenvironment
The tumor microenvironment (TME) is the environment around a tumor, including the surrounding blood vessels, immune cells, fibroblasts, signaling molecules and the extracellular matrix (ECM). The tumor and the surrounding microenvironment are closely related and interact constantly. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells.
Show more
Related publications (404)

Transposable elements mediate genetic effects altering the expression of nearby genes in colorectal cancer

Didier Trono, Evaristo Jose Planet Letschert, Nikolaos Lykoskoufis

Transposable elements (TEs) are prevalent repeats in the human genome, play a significant role in the regulome, and their disruption can contribute to tumorigenesis. However, TE influence on gene expression in cancer remains unclear. Here, we analyze 275 n ...
2024

A Cluster of Evolutionarily Recent KRAB Zinc Finger Proteins Protects Cancer Cells from Replicative Stress–Induced Inflammation

Didier Trono, Priscilla Turelli, Evaristo Jose Planet Letschert, Filipe Amândio Brandão Sanches Vong Martins, Florian Huber, Olga Marie Louise Rosspopoff, Romain Forey, Sandra Eloise Kjeldsen, Cyril David Son-Tuyên Pulver, Joana Carlevaro Fita

Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc fin ...
2024

The role of LRRK2 in lung adenocarcinoma

Aspasia Gkasti

Lung cancer is the leading cause of cancer-related deaths worldwide and the most commonlung cancer subtype is lung adenocarcinoma (LUAD). Frequently mutated genes involveactivating mutations in KRAS and loss of function mutations in TP53. LUADs primarily a ...
EPFL2024
Show more
Related MOOCs (6)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.