Dislocation Cross-Slip in Face-Centered Cubic Solid Solution Alloys
Related publications (263)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Plasticity size effects have been the focus of strong recent interest due to the miniaturization of devices such as actuators and different medical apparatuses. Devices with a sub-micrometre dimension have a high market potential and therefore a thorough u ...
During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior ...
We have recently shown that minute solute element additions to liquid metallic alloys can strongly influence the nucleation of the fcc phase and act as a grain refinement method. Electron back-scattered diffraction observations revealed a concomitant incre ...
Three newly identified cross-slip mechanisms from atomistic simulations of fcc crystals, namely surface, bulk and intersection cross-slip types, were hierarchically informed into discrete dislocation dynamics simulations. The influence of each cross-slip t ...
Using atomistic simulations, the effect of jogs on the cross-slip of screw character dislocations and screw-dipole annihilation was examined for both FCC Cu and Ni. The stress-free activation energy for cross-slip at jogs is close to 0.4 eV in Cu, determin ...
Magnesium is a lightweight structural metal but it exhibits low ductility-connected with unusual, mechanistically unexplained, dislocation and plasticity phenomena-which makes it difficult to form and use in energy-saving lightweight structures. We employ ...
The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress disl ...
A new dislocation-based model for low cycle fatigue in fcc metals at a length scale smaller than the feature size of the dislocation structures is presented. It uses the crystal plasticity finite element method and dislocation densities as internal variabl ...
The line tension Gamma of a dislocation is an important and fundamental property ubiquitous to continuum scale models of metal plasticity. However, the precise value of Gamma in a given material has proven difficult to assess, with literature values encomp ...
Molecular dynamics simulations of dislocation/obstacle interactions are enhancing our physical understanding of plasticity. However, despite increasing computational power, the interaction between simulation cell boundaries and the long ranged fields of di ...