Euclidean geometryEuclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.
Gröbner basisIn mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K[x1, ..., xn] over a field K. A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite.
Standard basisIn mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane formed by the pairs (x, y) of real numbers, the standard basis is formed by the vectors Similarly, the standard basis for the three-dimensional space is formed by vectors Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction.
Schauder basisIn mathematics, a Schauder basis or countable basis is similar to the usual (Hamel) basis of a vector space; the difference is that Hamel bases use linear combinations that are finite sums, while for Schauder bases they may be infinite sums. This makes Schauder bases more suitable for the analysis of infinite-dimensional topological vector spaces including Banach spaces. Schauder bases were described by Juliusz Schauder in 1927, although such bases were discussed earlier.
Euclidean algorithmIn mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (300 BC). It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use.
Hamiltonian systemA Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory. Informally, a Hamiltonian system is a mathematical formalism developed by Hamilton to describe the evolution equations of a physical system.
Symplectic matrixIn mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition where denotes the transpose of and is a fixed nonsingular, skew-symmetric matrix. This definition can be extended to matrices with entries in other fields, such as the complex numbers, finite fields, p-adic numbers, and function fields. Typically is chosen to be the block matrix where is the identity matrix. The matrix has determinant and its inverse is .
Hamiltonian mechanicsHamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics.
Homological mirror symmetryHomological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory. In an address to the 1994 International Congress of Mathematicians in Zürich, speculated that mirror symmetry for a pair of Calabi–Yau manifolds X and Y could be explained as an equivalence of a constructed from the algebraic geometry of X (the of coherent sheaves on X) and another triangulated category constructed from the symplectic geometry of Y (the derived ).
Mathematical structureIn mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance. A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, events, equivalence relations, differential structures, and .