Publication

Non-contact femtosecond laser-based methods for investigating glass mechanics at small scales

Abstract

With the progress made in miniaturizing systems over the last decades, understanding materials’ behavior at small scales has become a necessity. In this context, glass behavior has remained largely unknown, partly for technological reasons and partly due to the inherent difficulties associated with its brittle fracture behavior. Despite their importance for technological implementation, questions such as its failure statistics or its behavior under constant load remain unanswered. This thesis aims at filling the gap of the available methodologies and instrumentation for the mechanical testing of glass at the micro-/nano- scale. Until recently, suitable methods for manufacturing arbitrary shapes in glass were missing, hampering the implementation of appropriate testing methods. Fortunately, recent progress in the field of femtosecond laser processing has opened new opportunities for designing specific tools adapted to the investigation of glass micromechanics. In addition, the careful observation of nanoscale self-organization processes taking place during laser exposure offers a novel means for observing fracture statistical behavior. Here, we use this novel glass processing method to introduce two novel experimental approaches: one based on novel concept of contactless micro-/nano-monolithic tensile tester, and a second one, based on statistical observations of an intermittent behavior occurring during laser exposure. Using these two approaches, we are able not only to load the material to unprecedented high level of stress and this, in a pure tensile mode, but also to study stress relaxation effects and finally, to explore its fracture statistical behavior. From the technology development perspective, this thesis offers an experimental framework for contactless testing of glass materials that, in particular for silica, set guidelines for microsystems designers. In parallel, this work demonstrates the use of unconventional methods, inherited from other scientific disciplines, as a means for extracting relevant brittle fracture parameters, usually difficult to obtain at the microscale and requiring extensive numbers of experiments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Glass
Glass is a non-crystalline solid that is often transparent, brittle and chemically inert. It has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenching) of the molten form; some glasses such as volcanic glass are naturally occurring. The most familiar, and historically the oldest, types of manufactured glass are "silicate glasses" based on the chemical compound silica (silicon dioxide, or quartz), the primary constituent of sand.
Glass production
Glass production involves two main methods – the float glass process that produces sheet glass, and glassblowing that produces bottles and other containers. It has been done in a variety of ways during the history of glass. Broadly, modern glass container factories are three-part operations: the "batch house", the "hot end", and the "cold end". The batch house handles the raw materials; the hot end handles the manufacture proper—the forehearth, forming machines, and annealing ovens; and the cold end handles the product-inspection and packaging equipment.
Behavior
Behavior (American English) or behaviour (British English) is the range of actions and mannerisms made by individuals, organisms, systems or artificial entities in some environment. These systems can include other systems or organisms as well as the inanimate physical environment. It is the computed response of the system or organism to various stimuli or inputs, whether internal or external, conscious or subconscious, overt or covert, and voluntary or involuntary.
Show more
Related publications (53)

Femtosecond laser-induced modifications and self-organization in complex glass systems

Gözden Torun

Ultrashort laser pulses, i.e., pulses emitted shorter than a picosecond, can tailor material properties by introducing permanent modifications locally in three dimensions. Remarkably, under a certain exposure condition, these modifications are accompanied ...
EPFL2023

On the interaction of femtosecond laser pulses with layered dielectric materials

Ruben Ricca

Materials properties are strictly dependent on their microstructure. The internal symmetries and the disposition of the constituting atoms of a material, which depend on its crystallographic structure, greatly affect its response to mechanical, electromagn ...
EPFL2023

Formation Mechanism of Elemental Te Produced in Tellurite Glass Systems by Femtosecond Laser Irradiation

Yves Bellouard, Gözden Torun

The formation of elemental trigonal tellurium (t-Te) on tellurite glass surfaces exposed to femtosecond laser pulses is discussed. Specifically, the underlying elemental crystallization phenomenon is investigated by altering laser parameters in common tell ...
2023
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.