Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We tested the hypothesis that common principles govern the production of the locomotor patterns for both straight-ahead and curved walking. Whole body movement recordings showed that continuous curved walking implies substantial, limb-specific changes in n ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of al1 this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
The use of higher order autocorrelations as features for pattern classification has been usually restricted to second or third orders due to high computational costs. Since the autocorrelation space is a high dimensional space we are interested in reducing ...
Although many Offline Cursive Word Recognition systems are based on HMMs, no attention was ever paid, to our knowledge, to the fact that the feature vectors are typically not in the most suitable form for modeling. They are most of the time correlated and ...
In this paper we investigate the use of a temporal extension of Independent Component Analysis (ICA) for the discrimination of three mental tasks for asynchronous EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact i ...
We propose Independent Component Analysis representation and Support Vector Machine classification to extract facial features in a face detection/localization context. The goal is to find a better space where project the data in order to build ten differen ...
We present an application of Independent Component Analysis (ICA) to the discrimination of mental tasks for EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for di ...
In this paper we investigate the use of a temporal extension of Independent Component Analysis (ICA) for the discrimination of three mental tasks for asynchronous EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact i ...
This paper aims to propose a novel approach to generate new generic human walking patterns using motion-captured data, leading to a real-time engine intended for virtual humans animation. The method applies the PCA (principal component analysis) technique ...
We present an application of Independent Component Analysis (ICA) to the discrimination of mental tasks for EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for di ...