Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Skyrmions are nanometric spin whirls that can be stabilized in magnets lacking inversion symmetry. The properties of isolated Skyrmions embedded in a ferromagnetic background have been intensively studied. We show that single Skyrmions and clusters of Skyrmions can also form in the helical phase and investigate theoretically their energetics and dynamics. The helical background provides natural one-dimensional channels along which a Skyrmion can move rapidly. In contrast to Skyrmions in ferromagnets, the Skyrmion-Skyrmion interaction has a strong attractive component and thus Skyrmions tend to form clusters with characteristic shapes. These clusters are directly observed in transmission electron microscopy measurements in thin films of Cu2OSeO3. Topological quantization, high mobility, and the confinement of Skyrmions in channels provided by the helical background may be useful for future spintronics devices.
Romain Christophe Rémy Fleury, Benjamin Apffel