Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Today, epilepsy is one of the most common chronic diseases affecting more than 65 million people worldwide and is ranked number four after migraine, Alzheimer’s disease, and stroke. Despite the recent advances in anti-epileptic drugs, one-third of the epileptic patients continue to have seizures. More importantly, epilepsy-related causes of death account for 40% of mortality in high-risk patients. However, no reliable wearable device currently exists for real-time epileptic seizure detection. In this paper, we propose e-Glass, a wearable system based on four electroencephalogram (EEG) electrodes for the detection of epileptic seizures. Based on an early warning from e-Glass, it is possible to notify caregivers for rescue to avoid epilepsy-related death due to the underlying neurological disorders, sudden unexpected death in epilepsy, or accidents during seizures. We demonstrate the performance of our system using the Physionet.org CHB-MIT Scalp EEG database for epileptic children. Our experimental evaluation demonstrates that our system reaches a sensitivity of 93.80% and a specificity of 93.37%, allowing for 2.71 days of operation on a single battery charge.
David Atienza Alonso, Giovanni Ansaloni, José Angel Miranda Calero, Jonathan Dan, Amirhossein Shahbazinia, Flavio Ponzina