Publication

Local activation of surface and hybrid acoustic waves in optical microwires

Abstract

Elastic vibrations in subwavelength structures have gained importance recently in fundamental light–matter studies and various optoacoustic applications. Existing techniques have revealed the presence of distinct acoustic resonances inside silica microwires yet remain unable to individually localize them. Here, we locally activate distinct classes of acoustic resonances inside a tapered fiber using a phase-correlation distributed Brillouin method. Experimental results verify the presence of surface and hybrid acoustic waves at distinct fiber locations and demonstrate, to the best of our knowledge, the first distributed surface acoustic wave measurement. This technique is important for understanding properties of optoacoustic interactions and enabling designs of novel optomechanical devices.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Double-clad fiber
Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the core. It is surrounded by the inner cladding, which is surrounded by the outer cladding. The three layers are made of materials with different refractive indices. There are two different kinds of double-clad fibers. The first was developed early in optical fiber history with the purpose of engineering the dispersion of optical fibers.
Photonics
Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light.
Optical fiber
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables.
Show more
Related publications (39)

Observation of SQUID-Like Behavior in Fiber Laser with Intra-Cavity Epsilon-Near-Zero Effect

Camille Sophie Brès, Marco Clementi, Jiaye Wu, Qian Li, Xuanyi Liu

Establishing relations between fundamental effects in far-flung areas of physics is a subject of great interest in the current research. Realization of a novel photonic system akin to the radio-frequency superconducting quantum interference device (RF-SQUI ...
WILEY-V C H VERLAG GMBH2022

Ultrafast dynamic switching of optical response based on nonlinear hyperbolic metamaterial platform

Jiaye Wu, Qian Li

The pursuit of high-speed and on-chip optical communication systems has promoted extensive exploration of all-optical control of light-matter interactions via nonlinear optical processes. Here, we have numerically investigated the ultrafast dynamic switchi ...
Optica Publishing Group2022

Exploring nonlinearities in multimode optical fibers for lasers and computing

Ugur Tegin

Multimode optical fibers are the backbone of telecommunication and medical imaging. When light with high intensity travels through a multimode fiber, photons and matter start to interact and propa-gation becomes nonlinear. The nonlinear propagation of ligh ...
EPFL2021
Show more
Related MOOCs (1)
Cavity Quantum Optomechanics
Fundamentals of optomechanics. Basic principles, recent developments and applications.