AMDAdvanced Micro Devices, Inc., commonly abbreviated as AMD, is an American multinational semiconductor company based in Santa Clara, California, that develops computer processors and related technologies for business and consumer markets. The company was founded in 1969 by Jerry Sanders and a group of other technology professionals. AMD's early products were primarily memory chips and other components for computers. The company later expanded into the microprocessor market, competing with Intel, its main rival in the industry.
2020–2023 global chip shortageThe 2020–present global chip shortage is an ongoing, worldwide chip shortage affecting more than 169 industries. The crisis has led to major price increases, long queues and reselling among consumers and manufacturers for automobiles, graphics cards, video game consoles, computers, household appliances, and other consumer electronics that require integrated circuits (commonly called "chips").
QualcommQualcomm (ˈkwɒlkɒm) is an American multinational corporation headquartered in San Diego, California, and incorporated in Delaware. It creates semiconductors, software, and services related to wireless technology. It owns patents critical to the 5G, 4G, CDMA2000, TD-SCDMA and WCDMA mobile communications standards. Qualcomm was established in 1985 by Irwin Jacobs and six other co-founders. Its early research into CDMA wireless cell phone technology was funded by selling a two-way mobile digital satellite communications system known as Omnitracs.
Monochromatic radiationIn physics, monochromatic radiation is electromagnetic radiation with a single constant frequency. When that frequency is part of the visible spectrum (or near it) the term monochromatic light is often used. Monochromatic light is perceived by the human eye as a spectral color. When monochromatic radiation propagates through vacuum or a homogeneous transparent medium, it has a single constant wavelength. No radiation can be totally monochromatic, since that would require a wave of infinite duration as a consequence of the Fourier transform's localization property (cf.
Rubidium standardA rubidium standard or rubidium atomic clock is a frequency standard in which a specified hyperfine transition of electrons in rubidium-87 atoms is used to control the output frequency. The Rb standard is the most inexpensive, compact, and widely produced atomic clock, used to control the frequency of television stations, cell phone base stations, in test equipment, and global navigation satellite systems like GPS. Commercial rubidium clocks are less accurate than caesium atomic clocks, which serve as primary frequency standards, so the rubidium clock is a secondary frequency standard.