Parameter Determination of Sensor Stochastic Models under Covariate Dependency
Related publications (208)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Methods for direct data-driven tuning of the parameters of precompensators for LPV systems are developed. Since the commutativity property is not always satisfied for LPV systems, previously proposed methods for LTI systems that use this property cannot be ...
Generalized Linear Models have become a commonly used tool of data analysis. Such models are used to fit regressions for univariate responses with normal, gamma, binomial or Poisson distribution. Maximum likelihood is generally applied as fitting method. I ...
The classic Lebesgue ANOVA expansion offers an elegant way to represent functions that depend on a high-dimensional set of parameters and it often enables a substantial reduction in the evaluation cost of such functions once the ANOVA representation is con ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
We show that estimation of parameters for the popular Gaussian model of speech in noise can be regularised in a Bayesian sense by use of simple prior distributions. For two example prior distributions, we show that the marginal distribution of the uncorrup ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
A major barrier preventing the wide employment of mobile networks of robots in tasks such as exploration, mapping, surveillance, and environmental monitoring is the lack of efficient and scalable multi-robot passive and active sensing (estimation) methodol ...
In prediction error identification, the information matrix plays a central role. Specifically, when the system is in the model set, the covariance matrix of the parameter estimates converges asymptotically, up to a scaling factor, to the inverse of the infor ...
We consider quasilinear systems of second order elliptic equations on R-N. Using a continuation theorem based on the topological degree for C-1-Fredholm maps, we derive global properties of a maximal connected set of solutions which decay exponentially to ...
This Master thesis presents a complete cycle in the use of models for the study of a complex pathway like the TOR pathway. Previous models were reproduced for the phosphatase part of the pathway, and the assumptions used and the results they provided were ...