Compliance (physiology)Compliance is the ability of a hollow organ (vessel) to distend and increase volume with increasing transmural pressure or the tendency of a hollow organ to resist recoil toward its original dimensions on application of a distending or compressing force. It is the reciprocal of "elastance", hence elastance is a measure of the tendency of a hollow organ to recoil toward its original dimensions upon removal of a distending or compressing force. The terms elastance and compliance are of particular significance in cardiovascular physiology and respiratory physiology.
TurbulenceIn fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers. Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent.
Copeland's methodCopeland's method is a ranked voting method based on a scoring system of pairwise "wins", "losses", and "ties". The method has a long history: Ramon Llull described the system in 1299, so it is sometimes referred to as "Llull's method" The Marquis de Condorcet described a similar system in the 1780s, so the method could be referred to as "Condorcet's method", but instead other systems were subsequently devised that choose the Condorcet winner. Arthur Herbert Copeland described the system in the 1950s, so it has been frequently been called "Copeland's method".
Suspension (topology)In topology, a branch of mathematics, the suspension of a topological space X is intuitively obtained by stretching X into a cylinder and then collapsing both end faces to points. One views X as "suspended" between these end points. The suspension of X is denoted by SX or susp(X). There is a variation of the suspension for pointed space, which is called the reduced suspension and denoted by ΣX. The "usual" suspension SX is sometimes called the unreduced suspension, unbased suspension, or free suspension of X, to distinguish it from ΣX.