Scalable production of double emulsion drops with thin shells
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Performances of surface biosensors are often controlled by the analyte delivery rate to the sensing surface instead of sensors intrinsic detection capabilities. In a microfluidic channel, analyte transports diffusively to the biosensor surface severely lim ...
Microreactor technology, an important method of process intensification, offers numerous potential benefits for the process industries. Fluid–fluid reactions with mass transfer limitations have already been advantageously carried out in small-scale geometr ...
We present a two-dimensional granular model for the mechanical behavior of an ensemble of globular grains during solidification. The grain structure is produced by a Voronoi tessellation based on an array of predefined nuclei. We consider the fluid flow ca ...
In recent years, the Lattice Boltzmann Method (LBM) has been demonstrated as an interesting alternative for the simulation of complex fluid flows. Unlike finite elements models (FEM) based on a discretization of macroscopic continuum equations, the LBM is ...
We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pre ...
Performances of the biosensors are often limited by the depletion zones created around the sensing area which impede the effective analyte transport. To overcome this limitation, we propose and demonstrate a nanoplasmonic-nanofluidic sensor enabling target ...
Microfluidic systems are an attractive solution for the miniaturization of biological and chemical assays. The typical sample volume can be reduced up to 1 million-fold, and a superb level of spatiotemporal control is possible, facilitating highly parallel ...
This article presents the design and fabrication of a microfluidic biosensor cartridge for the continuous and simultaneous measurement of biologically relevant analytes in a sample solution. The biosensor principle is based on the amperometric detection of ...
It has been established that primary stability of femoral stems is a determinant of the clinical success of cementless total hip arthroplasty. Excessive interface micromotions may lead to a peri-implant fibrous tissue formation resulting in aseptic looseni ...
We introduce for the first time an integrated optofluidic interferometer on a PDMS microfluidic chip. By imaging the local interference patterns inside the chip, both of the fluid pressure and flow rate can be measured. (C) 2009 Optical Society of America ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2010