Moyal productIn mathematics, the Moyal product (after José Enrique Moyal; also called the star product or Weyl–Groenewold product, after Hermann Weyl and Hilbrand J. Groenewold) is an example of a phase-space star product. It is an associative, non-commutative product, , on the functions on R2n, equipped with its Poisson bracket (with a generalization to symplectic manifolds, described below). It is a special case of the -product of the "algebra of symbols" of a universal enveloping algebra.
Impulse excitation techniqueThe impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures (up to 1700 °C) under different atmospheres.
Universal enveloping algebraIn mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators.
Filtered algebraIn mathematics, a filtered algebra is a generalization of the notion of a graded algebra. Examples appear in many branches of mathematics, especially in homological algebra and representation theory. A filtered algebra over the field is an algebra over that has an increasing sequence of subspaces of such that and that is compatible with the multiplication in the following sense: In general there is the following construction that produces a graded algebra out of a filtered algebra.
Method of quantum characteristicsQuantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories.