Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
The recent developments of deep learning cover a wide variety of tasks such as image classification, text translation, playing go, and folding proteins.All these successful methods depend on a gradient-based learning algorithm to train a model on massive a ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Introduced to enable a wider use of Earth Observation images using natural language, Remote Sensing Visual Question Answering (RSVQA) remains a challenging task, in particular for questions related to counting. To address this specific challenge, we propos ...
2023
, , ,
Remote sensing visual question answering (RSVQA) opens new avenues to promote the use of satellites data, by interfacing satellite image analysis with natural language processing. Capitalizing on the remarkable advances in natural language processing and c ...
2022
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
EPFL2023
, ,
Recent transformer language models achieve outstanding results in many natural language processing (NLP) tasks. However, their enormous size often makes them impractical on memory-constrained devices, requiring practitioners to compress them to smaller net ...
Identifying the frames of news is important to understand the articles' vision, intention, message to be conveyed, and which aspects of the news are emphasized. Framing is a widely studied concept in journalism, and has emerged as a new topic in computing, ...
In this dissertation, we propose multiple methods to improve transfer learning for pretrained language models (PLMs). Broadly, transfer learning is a powerful technique in natural language processing, where a language model is first pre-trained on a data-r ...