Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We propose an analog-to-digital converter (ADC) architecture, implemented in an FPGA, that is fully reconfigurable and easy to calibrate. This approach allows to alter the design, according to the system requirements, with simple modifications in the firmware. Therefore it can be used in a wide range of operating conditions, including a harsh cryogenic environment. The proposed architecture employs time-to-digital converters (TDCs) and phase interpolation techniques to reach a sampling rate, higher than the clock frequency (maximum 400 MHz), up to 1.2 GSa/s. The resulting FPGA ADC can achieve a 6 bit resolution (ENOB) over a 0.9 to 1.6 V input range and an effective resolution bandwidth (ERBW) of 15 MHz. This implies that the ADC has an effective Nyquist rate of 30 MHz, with an oversampling ratio of 40×. The system non-linearities are less than 1 LSB. The main advantages of this architecture are its scalability and reconfigurability, enabling applications with changing demands on one single platform.
David Atienza Alonso, Tomas Teijeiro Campo, Silvio Zanoli, Fabio Montagna
, ,