Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis – A NanoSIMS study
Related publications (61)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Objectives The endosymbiosis with Symbiodiniaceae is key to the ecological success of reef-building corals. However, climate change is threatening to destabilize this symbiosis on a global scale. Most studies looking into the response of corals to heat str ...
The oxygen isotope compositions of fossil biocalcites, such as foraminifera, bivalves, brachiopods, and belemnites have allowed for reconstructions of sea surface and deep ocean temperatures throughout the Phanerozoic and constitute the most important reco ...
Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II ...
The symbiont-bearing jellyfish Cassiopea live a benthic lifestyle, positioning themselves upside-down on sediments in shallow waters to allow their endosymbiotic algae to photosynthesize in the sunlight. Over the last decades Cassiopea has become increasin ...
The jellyfish Cassiopea largely cover their carbon demand via photosynthates produced by microalgal endosymbionts, but how holobiont morphology and tissue optical properties affect the light microclimate and symbiont photosynthesis in Cassiopea remain unex ...
ROYAL SOC2023
,
Accumulation of methane in oxic waters of lakes and the ocean has been widely reported. Despite the importance for the greenhouse gas budget, mechanistic controls of such "methane paradox" remain elusive. Here, we use a combination of CH4 concentration and ...
WILEY2022
,
Ocean acidification is posing a threat to calcifying organisms due to the increased energy requirements of calcification under high CO2 conditions. The ability of scleractinian corals to cope with future ocean conditions will thus depend on their ability t ...
The coral-algal symbiosis is maintained by a constant and limited nitrogen availability in the holobiont. Denitrifiers, i.e., prokaryotes reducing nitrate/nitrite to dinitrogen, could contribute to maintaining the nitrogen limitation in the coral holobiont ...
By the century's end, many tropical seas will reach temperatures exceeding most coral species' thermal tolerance on an annual basis. The persistence of corals in these regions will, therefore, depend on their abilities to tolerate recurrent thermal stress. ...
Recurrent mass bleaching events are pushing coral reefs worldwide to the brink of ecological collapse. While the symptoms and consequences of this breakdown of the coral–algal symbiosis have been extensively characterized, our understanding of the underlyi ...