Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering
Related publications (104)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Molybdenum ditelluride (MoTe2) is attracting considerable interest since it is the archetypal type-II Weyl semimetal and a candidate for topological superconductivity. We investigate the superconducting phase diagram of two MoTe2 polymorphs using the ab in ...
Robust quantum systems rely on having a protective environment with minimized relaxation channels. Super-conducting gaps play an important role in the design of such environments. The interaction of localized single spins with a conventional superconductor ...
The motivation to search for signatures of superconductivity in Weyl semi-metals and other topological phases lies in their potential for hosting exotic phenomena such as nonzero-momentum pairing or the Majorana fermion, a viable candidate for the ultimate ...
Magnetic impurities generate a wealth of phenomena on surfaces. On metals, conducting electrons screen the magnetic moment giving rise to the Kondo effect. On superconductors, the Yu-Shiba-Rusinov (YSR) states emerge inside the superconducting gap due to t ...
High-Temperature Superconductors (HTS) can be superconducting in liquid nitrogen 77 K, holding immense promises for our future. They can enable disruptive technologies such as nuclear fusion, lossless power transmission, cancer treatment devices, and techn ...
The binary Re1-xMox alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susceptibility, and ...
Two-dimensional superconductors attract great interest both for their fundamental physics and for their potential applications, especially in the rapidly growing field of quantum computing. Despite intense theoretical and experimental efforts, materials wi ...
Magnetic impurities on superconductors induce discrete bound levels inside the superconducting gap, known as Yu-Shiba-Rusinov (YSR) states. YSR levels are fully spin polarized such that the tunneling between YSR states depends on their relative spin orient ...
From recent advances in solid state physics, a novel material classification scheme has evolved
which is based on the concept of topology and provides an understanding of different phenomena
ranging from quantum transport to unusual flavors of superconduct ...
Spin-dependent scattering from magnetic impurities inside a superconductor gives rise to Yu-Shiba-Rusinov (YSR) states within the superconducting gap. They can be modeled by the largely equivalent Kondo or Anderson impurity models. The role of the magnetic ...