Publication

Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms

Volkan Cevher, Junhong Lin
2018
Report or working paper
Abstract

We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes over the data. We show that optimal generalization error bounds (up to a logarithmic factor) can be retained for distributed SGM provided that the partition level is not too large. We then extend our results to spectral algorithms (SA), including kernel ridge regression (KRR), kernel principal component analysis, and gradient methods. Our results are superior to the state-of-the-art theory. Particularly, our results show that distributed SGM has a smaller theoretical computational complexity, compared with distributed KRR and classic SGM. Moreover, even for non-distributed SA, they provide the first optimal, capacity-dependent convergence rates, for the case that the regression function may not be in the RKHS.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts

Loading

Related publications

Loading