On flexible Green function methods for atomistic/continuum coupling
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Multiscale or multiphysics partial differential equations are used to model a wide range of physical systems with various applications, e.g. from material and natural science to problems in biology or engineering. When the ratio between the smallest scale ...
This work presents an algorithmic scheme for solving the infinite-time constrained linear quadratic regulation problem. We employ an accelerated version of a popular proximal gradient scheme, commonly known as the Forward-Backward Splitting (FBS), and prov ...
Institute of Electrical and Electronics Engineers2017
This document describes the implementation of a neuron pruning method with pyTorch, and analyzes the results obtained by applying this method on convolutional and residual networks. The performance of the algorithm is measured in different test cases and w ...
Although many methods have been developed to detect walking by using body-worn inertial sensors, their performances decline when gait patterns become abnormal, as seen in children with cerebral palsy (CP). The aim of this study was to evaluate if fine-tuni ...
We consider the discretization of time-space diffusion equations with fractional derivatives in space and either 1D or 2D spatial domains. The use of implicit Euler scheme in time and finite differences or finite elements in space, leads to a sequence of d ...
Contact of rough surfaces is of prime importance in the study of friction and wear. Numerical simulations are well suited for this non-linear problem, but natural surfaces being fractal [1], they have high discretization requirements. There is therefore a ...
We consider the Langevin dynamics of a many-body system of interacting particles in d dimensions, in a very general setting suitable to model several out-of-equilibrium situations, such as liquid and glass rheology, active self-propelled particles, and gla ...
This semester project deals with the study of at fully clamped plates with various geome- tries (circular and square), piezoelectric properties and uniformly distributed load (normal to the surface). The stress distribution is analyzed in order to obtain a ...
This paper deals with fast simulations of the hemodynamics in large arteries by considering a reduced model of the associated fluid-structure interaction problem, which in turn allows an additional reduction in terms of the numerical discretisation. The re ...
The kinetic theory of rarefied gases and numerical schemes based on the Boltzmann equation, have evolved to the cornerstone of non-equilibrium gas dynamics. However, their counterparts in the dense regime remain rather exotic for practical non-continuum sc ...