Fast Least-Squares Padé approximation of problems with normal operators and meromorphic structure
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh re ...
The numerical analysis of a dynamic constrained optimization problem is presented. It consists of a global minimization problem that is coupled with a system of ordinary differential equations. The activation and the deactivation of inequality constraints ...
The goal of this report is to study the method introduced by Adomian known as the Adomian Decomposition Method (ADM), which is used to find an approximate solution to nonlinear partial differential equations (PDEs) as a series expansion involving the recur ...
We consider second-order quasilinear elliptic systems on un-bounded domains in the setting of Sobolev spaces. We complete our earlier work on the Fredholm and properness properties of the associated differential operators by giving verifiable conditions fo ...
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-squ ...
In this thesis we address the numerical approximation of the incompressible Navier-Stokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic to ...
We present the current Reduced Basis framework for the efficient numerical approximation of parametrized steady Navier-Stokes equations. We have extended the existing setting developed in the last decade (see e.g. [S. Deparis, SIAM J. Numer. Anal. 46 (2008 ...
The importance of stochasticity within biological systems has been shown repeatedly during the last years and has raised the need for efficient stochastic tools. We present SABRE, a tool for stochastic analysis of biochemical reaction networks. SABRE imple ...
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by mu ...
The objective of this thesis is to develop reduced models for the numerical solution of optimal control, shape optimization and inverse problems. In all these cases suitable functionals of state variables have to be minimized. State variables are solutions ...