Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Radioactive charging can significantly impact the way radioactive aerosols behave, and as a result their lifetime, but such effects are neglected in predictive model studies of radioactive plumes. The objective of this work is to determine the influence of radioactive charging on the vertical transport of radioactive aerosols in the atmosphere, through its effect on coagulation and deposition, as well as quantifying the impact of this charging on aerosol lifetime. The TwO-Moment Aerosol Sectional (TOMAS) microphysical model was extended to account for radioactive charging effects on coagulation in a computationally efficient way. The expanded model, TOMAS-RC (TOMAS with Radioactive Charging effects), was then used to simulate the microphysical evolution and deposition of radioactive aerosol (containing the isotopes 131I and 137Cs) in a number of idealized atmospheric transport experiments. Results indicate that radioactive charging can facilitate or suppress coagulation of radioactive aerosols, thus influencing the deposition patterns and total amount of radioactive aerosol mass available for long-range transport. Sensitivity simulations to uncertain parameters affirm the potential importance of radioactive charging effects. An important finding is that charging of neutral, coarse mode aerosol from background radiation can reduce coagulation rates and extend its lifetime in the atmosphere by up to a factor of 2. © 2018
, ,