Droplet number uncertainties associated with CCN: An assessment using observations and a global model adjoint
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were sub ...
Uncertainty in radiative forcing caused by aerosol–cloud interactions is about twice as large as for CO2 and remains the least well understood anthropogenic contribution to climate change. A major cause of uncertainty is the poorly quantified state of aero ...
The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD), organized in the Greater Athens Area (GAA), Greece from 15 May to 22 June 2014, aimed to study the physico-chemical properties of aerosols and their impact on the fo ...
Measurements of cloud condensation nuclei (CCN) concentrations (cm-3) at five levels of supersaturation between 0.2-1%, together with remote sensing profiling and aerosol size distributions, were performed at an urban background site of Athens during the H ...
The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensati ...
Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed o ...
The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Afr ...
Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular ag ...
Here we analyze regional-scale data collected on board the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign to study the aerosol-cloud droplet link and quantify the sensitivity of droplet number to aerosol number, chemical composition, ...
A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and ...