On the effect of dust particles on global cloud condensation nuclei and cloud droplet number
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
New particle formation (NPF) substantially contributes to global cloud condensation nuclei (CCN), and their climate impacts. Individual NPF events are also thought to increase local CCN, cloud droplet number (CDN), and cloud albedo. High resolution simulat ...
Usually the Arctic is relatively free of anthropogenic influence in summer, which means that particles from natural sources can be the most significant nuclei for cloud droplets. However, this is not the case during anomalously warm-air intrusions when the ...
The uptake of glyoxal (Gly) on 28 different samples with varying mineralogical origins, such as clays, mineral proxies, and natural dusts from the major arid regions of the Earth, was determined. Experiments were performed at ambient temperature inside a K ...
New particle formation (NPF) and growth can be an important source of cloud condensation nuclei for the Arctic atmosphere, where cloud formation is sensitive to their availability. Low-level clouds influence the Arctic energy budget, and likely contribute ...
Ice-nucleating particles (INPs) enable ice formation, profoundly affecting the microphysical and radiative properties, lifetimes, and precipitation rates of clouds. Mineral dust emitted from arid regions, particularly potassium-containing feldspar (K-felds ...
The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (Delta N-d, (ant)) in liquid-water clou ...
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3, NH3, HCl, and orga ...
Arctic clouds are sensitive to atmospheric particles since these are sometimes in such low concentrations that clouds cannot always form under supersaturated water vapor conditions. This is especially true in the late summer, when aerosol concentrations ar ...
The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed "Arctic amplification" ...
To quantify the contribution of new particle formation (NPF) to ultrafine particle number and cloud condensation nuclei (CCN) budgets, one has to understand the mechanisms that govern NPF in different environments and its temporal extent. Here, we study NP ...