Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing
Related publications (47)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper studies a damaging hail storm that occurred on 6 June 2015 in the complex topography of Switzerland. The storm persisted for several hours and produced large hail resulting in significant damage. Storms of comparable severity occur on average on ...
This paper studies a damaging hail storm that occurred on 6 June 2015 in the complex topography of Switzerland. The storm persisted for several hours and produced large hail resulting in significant damage. Storms of comparable severity occur on average on ...
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300g% over the next 50-100 years, which previous studies suggest could have a large effect on cloud m ...
The heterogeneous nucleation of water vapor on insoluble particles affects cloud formation, precipitation, the hydrological cycle, and climate. Despite its importance, heterogeneous nucleation remains a poorly understood phenomenon that relies heavily on e ...
A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations (ICNCs). The parameterization of Barahona and Nenes (2009, hereafter BN09) al ...
Macroscopic models of nucleation provide powerful tools for understanding activated phase transition processes. These models do not provide atomistic insights and can thus sometimes lack material-specific descriptions. Here, we provide a comprehensive fram ...
Estimating the homogeneous ice nucleation rate from undercooled liquid water is crucial for understanding many important physical phenomena and technological applications, and challenging for both experiments and theory. From a theoretical point of view, d ...
Disparities between the measured concentrations of ice-nucleating particles (INPs) and in-cloud ice crystal number concentrations (ICNCs) have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model th ...
Estimating the homogeneous ice nucleation rate from undercooled liquid water is crucial for understanding many important physical phenomena and technological applications, and challenging for both experiments and theory. From a theoretical point of view, d ...
In-cloud measurements of ice crystal number concentration can be orders of magnitude higher than the precloud ice nucleating particle number concentration. This disparity may be explained with secondary ice production processes. Several such processes have ...