Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity?
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Primary productivity and the associated uptake of atmospheric carbon dioxide in the Southern Ocean (SO) is thought to be generally limited by bioavailable iron (Fe). Two sources of Fe for the surface waters of the SO have been proposed: (1) oceanic input o ...
The large, rapid increase in atmospheric N2O concentrations that occurred concurrent with the abrupt warming at the end of the Last Glacial period might have been the result of a reorganization in global biogeochemical cycles. To explore the sensitivity of ...
Assimilation of inorganic nitrogen from nutrient-poor tropical seas is an essential challenge for the endosymbiosis between reef-building corals and dinoflagellates. Despite the clear evidence that reef-building corals can use ammonium as inorganic nitroge ...
Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto ...
The present thesis work deals with the investigation of the heterogeneous reactions involving nitrate radical (NO3), dinitrogen pentoxide (N2O5) and ozone (O3) on surrogates of atmospheric mineral dust particles characteristic of the troposphere. An additi ...
The US Environmental Protection Agency's (EPA) Community Multiscale Air Quality (CMAQ) modeling system version 4.7 is further developed to enhance its capability in simulating the photochemical cycles in the presence of dust particles. The new model treatm ...
A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1-10 (coarse) inorganic components and determine the effect of ...
This study uses published data on dust-water interactions to examine the importance of including water adsorption effects when describing the hygroscopic and cloud condensation nuclei (CCN) behavior of mineral dust aerosol. Adsorption activation theory (AT ...
In this paper, we introduce the ECHAM5-HAMMOZ aerosol- chemistry-climate model that includes fully interactive simulations of Ox-NOx-hydrocarbons chemistry and of aerosol microphysics (including prognostic size distribution and mixing state of aerosols) im ...
A stochastic framework for modelling catchment-scale hydrologic and nitrate responses (as a byproduct of transport processes and of a biogeochemical model of nitrogen cycling and transformations in heterogeneous soils) is proposed and applied to a 53 km2 b ...