Publication

Un paysage agricole urbain pour le bassin genevois: une alternative à la construction de la ville à côté de la ville

Irene Lucie Desmarais
2018
Student project
Abstract

Le développement de la ville dans le bassin genevois fait face à une situation paradoxale partagée entre, d’une part, le besoin de surface à bâtir pour répondre à la forte croissance démographique et, d’autre part, la raréfaction des terres disponibles toujours mieux protégées en tant que ressource agricole, environnementale et paysagère. Le projet se présente comme une alternative à la construction de la ville à côté de la ville, consommatrice de surfaces productives. Le scénario proposé découle d’une lecture du paysage agraire comme palimpseste: résultat d’un long processus d’accumulation de projets basés sur des éléments comme la topographie et l’hydrographie, la biologie naturelle ou encore le sol, et traduisant des rapports techniques, économiques et sociaux qui ont évolué au cours du temps. Au cœur de l’espace agricole destiné à la production de denrées alimentaires, cette lecture met en lumière un certain nombre d’opportunités foncières ayant perdu leur rôle initial dévolu à l’agriculture traditionnelle ou intensive. Le long d’une séquence territoriale stratégique, le projet tire parti de ces situations foncières et paysagères. Il appuie le développement de la ville sur la maison d’agriculteur, les jardins familiaux, la marge village ou encore la carrière, générant un paysage fragmenté, discontinu, où se rencontrent différents types d’agriculture et différents types d’habitats.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (3)
Dependent type
In computer science and logic, a dependent type is a type whose definition depends on a value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, F*, Epigram, and Idris, dependent types help reduce bugs by enabling the programmer to assign types that further restrain the set of possible implementations.
Type system
In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Type theory
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general, type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation, a common one is Thierry Coquand's Calculus of Inductive Constructions.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.