Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A prerequisite to gain a complete understanding of the most basic aspects of chemical reactions is the ability to perform experiments with complete control over the reactant degrees of freedom. By controlling these, details of a reaction mechanism can be investigated and ultimately manipulated. Here, we present a study of chemi-ionization—a fundamental energy-transfer reaction—under completely controlled conditions. The collision energy of the reagents was tuned from 0.02 K to 1,000 K, with the orientation of the excited Ne atom relative to Ar fully specified by an external magnetic field. Chemi-ionization of Ne(3P2) and Ar in these conditions enables a detailed investigation of how the reaction proceeds, and provides us with a means to control the branching ratio between the two possible reaction outcomes. The merged-beam experimental technique used here allows access to a low-energy regime in which the atoms dynamically reorient into a favourable configuration for reaction, irrespective of their initial orientations.
, ,
Ksenia Briling, Puck Elisabeth van Gerwen, Yannick Calvino Alonso, Malte Martin Franke